ว ตถ ประสงค ของบทเร ยน

Size: px
Start display at page:

Download "ว ตถ ประสงค ของบทเร ยน"

Transcription

1 Logic Design with MSI Circuits ว ตถ ประสงค ของบทเร ยน ร จ กวงจรประเภท MSI เข าใจการทำงานของวงจร MSI ท ม ใช อย ท วไป สามารถประย กต ใช วงจร MSI ในการออกแบบวงจรลอจ กแบบต างๆ ได A. Yaicharoen 1

2 Type of Circuits Type of circuits Number of gates Small-scale integration (SSI) 1-10 Medium-scale integration (MSI) Large-scale integration (LSI) 100-1,000 Very-large-scale integration (VLSI) 1,000 up หมายเหต หน งส อบางเล มแบ งวงจรท ม เกตต งแต 1,000,000 เกต ข นไป ให อย ในกล ม ULSI (Ultra-large-scale integration) A. Yaicharoen 2

3 Multiplexers (MUXs) - also called a data selector Input lines consist of - data lines: 2 n lines - select lines: n lines - there may or may not be an enable line Output line: - output line: 1 line A. Yaicharoen 3

4 Multiplexer Function -Truth table of a 4:1 multiplexer (without enable) S 1 0 Select inputs S Output Y Y = S. + I I 0 I 1 I 2 I 3 1 S0. I0 + S1. S0. I1 + S1. S0. I 2 S1. S0. 3 A. Yaicharoen 4

5 Multiplexer Function -Truth table of a 4:1 multiplexer (with enable) Enable E Select inputs S 1 S 0 0 X X Output Y Y = E.(S 1.S 0.I 0 + S 1.S 0.I 1 + S 1.S 0.I 2 + S 1.S 0.I 3 ) I 0 I 1 I 2 I 3 A. Yaicharoen 5

6 Logic Circuit Design using Multiplexer Advantages No need for logic simplification Minimize the IC package count Simplify the logic design A. Yaicharoen 6

7 Logic Design using MUX Case 1: Number of inputs is equal to number of select lines Design procedure Identify the decimal number corresponding to each minterm in the expression Connect logic 1 level to input lines corresponding to these numbers Connect logic 0 level to the others Connect inputs to selected lines A. Yaicharoen 7

8 Case1: Inputs = Select lines a three-variable function using a 8-to-1-line multiplexer A. Yaicharoen 8

9 Example f(x,y,z) = Σm(0,2,3,5) using 8-to-1-line multiplexer A. Yaicharoen 9

10 Logic Design using MUX Case 2: Number of inputs is higher than number of select lines Procedure 2.1: Reduce the number of inputs to the number of select lines by inspection k-map A. Yaicharoen 10

11 Case 2 -Truth table of a 3 variable logic circuit Input Output Input Output x y z Y x y z Y f f f f f f f f 7 A. Yaicharoen 11

12 Case2.1: Reducing Inputs a 3-variable Boolean function using a 4-to-1-line multiplexer A. Yaicharoen 12

13 Example f(x,y,z) = Σm(0,2,3,5) using a 4-to-1-line multiplexer A. Yaicharoen 13

14 Reducing Inputs with K-map A. Yaicharoen 14

15 Example f(x,y,z) = Σm(0,2,3,5) A. Yaicharoen 15

16 More on Reducing Inputs (a) Applying input variables y and z to the S 1 and S 0 select lines. (b) Applying input variables x and y to the S 0 and S 1 select lines. A. Yaicharoen 16

17 Example f(x,y,z) = Σm(0,2,3,5) (a) Applying input variables y and z to the S 1 and S 0 select lines. (b) Applying input variables x and y to the S 0 and S 1 select lines. A. Yaicharoen 17

18 Reducing 4-input to 3-input A. Yaicharoen 18

19 Example f(w,x,y,z) = Σm(0,1,5,6,7,9,12,15) A. Yaicharoen 19

20 Logic Design using MUX Procedure 2.2: Use multiplexer tree when number of inputs exceeds the largest number of inputs on available ICs Can be done by one of these two techniques - connect the MSB input to the enable/strobe input - connect the MSB input to another multiplexer A. Yaicharoen 20

21 Demultiplexers/Decoders -Performs the reverse operation of a multiplexer Input lines are: - 1 data line - n select lines - maybe 1 enable Output lines are - 2 n output lines A. Yaicharoen 21

22 Application Example A multiplexer/demultiplexer arrangement for information transmission A. Yaicharoen 22

23 Decoders A n-to-2 n -line decoder is a circuit that only one of the output line responds to the n-input data. Number of input:output is n:2 n (Note: a demultiplexer is a decoder with an enable input acting as a data input line A BCD to 7-segment decoder is a circuit that 7-bit output will make each segment of the 7-segment lit according to the 4-bit input A. Yaicharoen 23

24 A. Yaicharoen 24

25 A. Yaicharoen 25

26 3-to-8-line Decoder A. Yaicharoen 26

27 Application Example การใช 3-to-8-line decoder และ or-gate ในการสร างวงจร f1(x2,x1,x0) = Σm(1,2,4,5) และ f2(x2,x1,x0) = Σm(1,5,7) A. Yaicharoen 27

28 Application Example f 1 (x 2,x 1,x 0 ) = Σm(0,1,3,4,5,6) = Σm(2,7) and f 2 (x 2,x 1,x 0 ) = Σm(1,2,3,4,6) = Σm(0,5,7) A. Yaicharoen 28

29 Application Example f 1 (x 2,x 1,x 0 ) = ΠM(0,1,3,5) and f 2 (x 2,x 1,x 0 ) = ΠM(1,3,6,7) (a) Using output or-gates. (b) Using output nor-gates. A. Yaicharoen 29

30 3-to-8-line decoder using nand-gates A. Yaicharoen 30

31 Application Example f 1 (x 2,x 1,x 0 ) = Σm(0,2,6,7) and f 2 (x 2,x 1,x 0 ) = Σm(3,5,6,7) (a) Using output and-gates. (b) Using output nand-gates. A. Yaicharoen 31

32 A. Yaicharoen 32

33 A. Yaicharoen 33

34 A. Yaicharoen 34

35 A. Yaicharoen 35

36 Decoder with Enable Input And-gate 2-to-4-line decoder with an enable input A. Yaicharoen 36

37 Encoders - Similar to decoders - Usually number of input lines are more than number of output lines Number of input:output is 2 n :n A. Yaicharoen 37

38 A. Yaicharoen 38

39 A. Yaicharoen 39

40 A. Yaicharoen 40

41 A. Yaicharoen 41

42 A. Yaicharoen 42

43 Binary Adders Binary Half-Adder Binary Full-Adder x i y i s i c i x i y i c i-1 s i c i A. Yaicharoen 43

44 Binary Full-Adder s i = x i '.y i '.c i +x i '.y i.c i '+x i.y i '.c i '+x i.y i.c i c i+1 = x i.y i + x i.c i + y i.c i A. Yaicharoen 44

45 Parallel Binary Adder Parallel (ripple) binary adder A. Yaicharoen 45

46 Binary Subtractor Binary Half-Subtractor Binary Full-Subtractor x i y i d i b i x i y i b i d i b i A. Yaicharoen 46

47 Parallel Binary Subtractor Parallel (ripple) binary subtractor A. Yaicharoen 47

48 Parallel Binary Adder/Subtractor A. Yaicharoen 48

49 Carry Look-ahead Adder From Boolean expression of the F.A. c i+1 = x i y i + (x i +y i )c i Let s g i = x i y i (carry-generate function) and p i = (x i +y i ) (carry-propagate function) c 1 = g 0 + p 0 c 0 c 2 = g 1 + p 1 c 1 = g 1 + p 1 (g 0 + p 0 c 0 ) = g 1 + p 1 g 0 + p 1 p 0 c 0 A. Yaicharoen 49

50 Carry Look-ahead Adder (cont.) c 3 = g 2 + p 2 c 2 = g 2 + p 2 (g 1 + p 1 g 0 + p 1 p 0 c 0 ) = g 2 + p 2 g 1 + p 2 p 1 g 0 + p 2 p 1 p 0 c 0... c i+1 = g i + p i g i-1 + p i p i-1 g i p i p i-1...p 1 g 0 + p i p i-1...p 0 c 0 A. Yaicharoen 50

51 Carry Look-ahead Adder (cont.) Σ Σ Σ A. Yaicharoen 51

52 BCD Arithmetic BCD Adder Using a 4-bit binary adder to perform two one digit BCD addition a decimal 6 (binary ) will be added to the result if the sum output is an invalid BCD or if a carry at the MSB is 1 each BCD adder can be cascaded for adding several BCD digits A. Yaicharoen 52

53 BCD Arithmetic BCD Subtractor Convert the subtrahend to its 9 s complement form Add the result to the minuend If the summation result is an invalid BCD code or if the carry from the MSB is 1, add decimal 6 (binary ) and the end around carry (EAC) to this sum If the summation result is a valid BCD code, the result is negative and in the 9 s complement form A. Yaicharoen 53

54 Nine s Complementer Circuit A 9 s complementer circuit is a circuit designed to convert a decimal digit (in BCD code) to its 9 s complement created by adding binary to the 1 s complement of the number (ignore the carry) (Proof is left as a student exercise) A. Yaicharoen 54

55 Arithmetic Logic Unit (ALU) performs arithmetic and logic operations (depends on the selected mode) Read details and example in section 6.6 A. Yaicharoen 55

56 Comparators A comparator is a circuit that compares the magnitudes of two binary numbers Input: A i, B i, G i, E i, L i G i = 1 when A i-1 A i-2...a 1 A 0 > B i-1 B i-2...b 1 B 0 E i = 1 when A i-1 A i-2...a 1 A 0 = B i-1 B i-2...b 1 B 0 L i = 1 when A i-1 A i-2...a 1 A 0 < B i-1 B i-2...b 1 B 0 Output: G i+1, E i+1, L i+1 G i+1 = 1 when A i A i-1...a 1 A 0 > B i B i-1...b 1 B 0 E i+1 = 1 when A i A i-1...a 1 A 0 = B i B i-1...b 1 B 0 L i+1 = 1 when A i A i-1...a 1 A 0 < B i B i-1...b 1 B 0 A. Yaicharoen 56

57 1-bit Comparator A. Yaicharoen 57

58 Other MSI Circuits Parity generators/checkers Code converters BCD-to-binary converter Binary-to-BCD converter Priority encoders Decimal-to-BCD encoder Octal-to-binary Encoder Decoder/drivers for display devices BCD-to-decimal decoder/driver BCD-to-7-segment decoder/driver A. Yaicharoen 58

Logic. Combinational. inputs. outputs. the result. system can

Logic. Combinational. inputs. outputs. the result. system can Digital Electronics Combinational Logic Functions Digital logic circuits can be classified as either combinational or sequential circuits. A combinational circuit is one where the output at any time depends

More information

COMBINATIONAL LOGIC FUNCTIONS

COMBINATIONAL LOGIC FUNCTIONS COMBINATIONAL LOGIC FUNCTIONS Digital logic circuits can be classified as either combinational or sequential circuits. A combinational circuit is one where the output at any time depends only on the present

More information

Combinational Logic. By : Ali Mustafa

Combinational Logic. By : Ali Mustafa Combinational Logic By : Ali Mustafa Contents Adder Subtractor Multiplier Comparator Decoder Encoder Multiplexer How to Analyze any combinational circuit like this? Analysis Procedure To obtain the output

More information

Digital Logic Design ENEE x. Lecture 14

Digital Logic Design ENEE x. Lecture 14 Digital Logic Design ENEE 244-010x Lecture 14 Announcements Homework 6 due today Agenda Last time: Binary Adders and Subtracters (5.1, 5.1.1) Carry Lookahead Adders (5.1.2, 5.1.3) This time: Decimal Adders

More information

Chapter 4. Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. elements. Dr.

Chapter 4. Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. elements. Dr. Chapter 4 Dr. Panos Nasiopoulos Combinational: Circuits with logic gates whose outputs depend on the present combination of the inputs. Sequential: In addition, they include storage elements Combinational

More information

Chapter 4: Combinational Logic Solutions to Problems: [1, 5, 9, 12, 19, 23, 30, 33]

Chapter 4: Combinational Logic Solutions to Problems: [1, 5, 9, 12, 19, 23, 30, 33] Chapter 4: Combinational Logic Solutions to Problems: [, 5, 9, 2, 9, 23, 3, 33] Problem: 4- Consider the combinational circuit shown in Fig. P4-. (a) Derive the Boolean expressions for T through T 4. Evaluate

More information

Class Website:

Class Website: ECE 20B, Winter 2003 Introduction to Electrical Engineering, II LECTURE NOTES #5 Instructor: Andrew B. Kahng (lecture) Email: abk@ece.ucsd.edu Telephone: 858-822-4884 office, 858-353-0550 cell Office:

More information

Systems I: Computer Organization and Architecture

Systems I: Computer Organization and Architecture Systems I: Computer Organization and Architecture Lecture 6 - Combinational Logic Introduction A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept

More information

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute DIGITAL TECHNICS Dr. Bálint Pődör Óbuda University, Microelectronics and Technology Institute 4. LECTURE: COMBINATIONAL LOGIC DESIGN: ARITHMETICS (THROUGH EXAMPLES) 2016/2017 COMBINATIONAL LOGIC DESIGN:

More information

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays CMSC 33 Lecture 8 Midterm Exam returned ssign Homework 3 Circuits for ddition Digital Logic Components Programmable Logic rrays UMC, CMSC33, Richard Chang Half dder Inputs: and Outputs:

More information

Design of Combinational Logic

Design of Combinational Logic Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NASHIK 3. Design of Combinational Logic By Prof. Anand N. Gharu (Assistant Professor) PVGCOE Computer Dept.. 30 th June 2017 CONTENTS :- 1. Code Converter

More information

COMBINATIONAL LOGIC CIRCUITS. Dr. Mudathir A. Fagiri

COMBINATIONAL LOGIC CIRCUITS. Dr. Mudathir A. Fagiri COMBINATIONAL LOGIC CIRCUITS Dr. Mudathir A. Fagiri Standard Combinational Modules Decoder: Decode address Encoder: Encode address Multiplexer (Mux): Select data by address Demultiplexier (DeMux): Direct

More information

Chapter 3 Combinational Logic Design

Chapter 3 Combinational Logic Design Logic and Computer Design Fundamentals Chapter 3 Combinational Logic Design Part 2 Combinational Logic Charles Kime & Thomas Kaminski 28 Pearson Education, Inc. (Hyperlinks are active in View Show mode)

More information

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary

Number System. Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary Number System Decimal to binary Binary to Decimal Binary to octal Binary to hexadecimal Hexadecimal to binary Octal to binary BOOLEAN ALGEBRA BOOLEAN LOGIC OPERATIONS Logical AND Logical OR Logical COMPLEMENTATION

More information

Unit 3 Session - 9 Data-Processing Circuits

Unit 3 Session - 9 Data-Processing Circuits Objectives Unit 3 Session - 9 Data-Processing Design of multiplexer circuits Discuss multiplexer applications Realization of higher order multiplexers using lower orders (multiplexer trees) Introduction

More information

Logic and Computer Design Fundamentals. Chapter 5 Arithmetic Functions and Circuits

Logic and Computer Design Fundamentals. Chapter 5 Arithmetic Functions and Circuits Logic and Computer Design Fundamentals Chapter 5 Arithmetic Functions and Circuits Arithmetic functions Operate on binary vectors Use the same subfunction in each bit position Can design functional block

More information

Carry Look Ahead Adders

Carry Look Ahead Adders Carry Look Ahead Adders Lesson Objectives: The objectives of this lesson are to learn about: 1. Carry Look Ahead Adder circuit. 2. Binary Parallel Adder/Subtractor circuit. 3. BCD adder circuit. 4. Binary

More information

UNIT II COMBINATIONAL CIRCUITS:

UNIT II COMBINATIONAL CIRCUITS: UNIT II COMBINATIONAL CIRCUITS: INTRODUCTION: The digital system consists of two types of circuits, namely (i) (ii) Combinational circuits Sequential circuits Combinational circuit consists of logic gates

More information

Combina-onal Logic Chapter 4. Topics. Combina-on Circuit 10/13/10. EECE 256 Dr. Sidney Fels Steven Oldridge

Combina-onal Logic Chapter 4. Topics. Combina-on Circuit 10/13/10. EECE 256 Dr. Sidney Fels Steven Oldridge Combina-onal Logic Chapter 4 EECE 256 Dr. Sidney Fels Steven Oldridge Topics Combina-onal circuits Combina-onal analysis Design procedure simple combined to make complex adders, subtractors, converters

More information

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C.

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Combinational Logic ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2010 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Combinational Circuits

More information

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays

CMSC 313 Lecture 18 Midterm Exam returned Assign Homework 3 Circuits for Addition Digital Logic Components Programmable Logic Arrays MS 33 Lecture 8 Midterm Exam returned Assign Homework 3 ircuits for Addition Digital Logic omponents Programmable Logic Arrays UMB, MS33, Richard hang MS 33, omputer Organization & Assembly

More information

UNIT 1. BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS

UNIT 1. BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS UNIT 1. BOOLEAN ALGEBRA AND COMBINATIONAL CIRCUITS Numerical Presentation: In science, technology, business, and, in fact, most other fields of endeavour, we are constantly dealing with quantities. Quantities

More information

Function of Combinational Logic ENT263

Function of Combinational Logic ENT263 Function of Combinational Logic ENT263 Chapter Objectives Distinguish between half-adder and full-adder Use BCD-to-7-segment decoders in display systems Apply multiplexer in data selection Use decoders

More information

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan

Combinational Logic. Mantıksal Tasarım BBM231. section instructor: Ufuk Çelikcan Combinational Logic Mantıksal Tasarım BBM23 section instructor: Ufuk Çelikcan Classification. Combinational no memory outputs depends on only the present inputs expressed by Boolean functions 2. Sequential

More information

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic

Section 3: Combinational Logic Design. Department of Electrical Engineering, University of Waterloo. Combinational Logic Section 3: Combinational Logic Design Major Topics Design Procedure Multilevel circuits Design with XOR gates Adders and Subtractors Binary parallel adder Decoders Encoders Multiplexers Programmed Logic

More information

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C.

Combinational Logic. Lan-Da Van ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Combinational Logic ( 范倫達 ), Ph. D. Department of Computer Science National Chiao Tung University Taiwan, R.O.C. Fall, 2017 ldvan@cs.nctu.edu.tw http://www.cs.nctu.edu.tw/~ldvan/ Combinational Circuits

More information

IT T35 Digital system desigm y - ii /s - iii

IT T35 Digital system desigm y - ii /s - iii UNIT - II Combinational Logic Adders subtractors code converters binary parallel adder decimal adder magnitude comparator encoders decoders multiplexers demultiplexers-binarymultiplier Parity generator

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT201: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 5 Following the slides of Dr. Ahmed H. Madian ذو الحجة 1438 ه Winter

More information

CSEE 3827: Fundamentals of Computer Systems. Combinational Circuits

CSEE 3827: Fundamentals of Computer Systems. Combinational Circuits CSEE 3827: Fundamentals of Computer Systems Combinational Circuits Outline (M&K 3., 3.3, 3.6-3.9, 4.-4.2, 4.5, 9.4) Combinational Circuit Design Standard combinational circuits enabler decoder encoder

More information

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER

SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER SIR C.R.REDDY COLLEGE OF ENGINEERING ELURU 534 007 DIGITAL INTEGRATED CIRCUITS (DIC) LABORATORY MANUAL III / IV B.E. (ECE) : I - SEMESTER DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING DIGITAL

More information

Menu. Binary Adder EEL3701 EEL3701. Add, Subtract, Compare, ALU

Menu. Binary Adder EEL3701 EEL3701. Add, Subtract, Compare, ALU Other MSI Circuit: Adders >Binar, Half & Full Canonical forms Binar Subtraction Full-Subtractor Magnitude Comparators >See Lam: Fig 4.8 ALU Menu Look into m... 1 Binar Adder Suppose we want to add two

More information

Combinational Logic Design Arithmetic Functions and Circuits

Combinational Logic Design Arithmetic Functions and Circuits Combinational Logic Design Arithmetic Functions and Circuits Overview Binary Addition Half Adder Full Adder Ripple Carry Adder Carry Look-ahead Adder Binary Subtraction Binary Subtractor Binary Adder-Subtractor

More information

Combinational Logic Design Combinational Functions and Circuits

Combinational Logic Design Combinational Functions and Circuits Combinational Logic Design Combinational Functions and Circuits Overview Combinational Circuits Design Procedure Generic Example Example with don t cares: BCD-to-SevenSegment converter Binary Decoders

More information

CHAPTER1: Digital Logic Circuits Combination Circuits

CHAPTER1: Digital Logic Circuits Combination Circuits CS224: Computer Organization S.KHABET CHAPTER1: Digital Logic Circuits Combination Circuits 1 PRIMITIVE LOGIC GATES Each of our basic operations can be implemented in hardware using a primitive logic gate.

More information

Sample Test Paper - I

Sample Test Paper - I Scheme G Sample Test Paper - I Course Name : Computer Engineering Group Marks : 25 Hours: 1 Hrs. Q.1) Attempt any THREE: 09 Marks a) Define i) Propagation delay ii) Fan-in iii) Fan-out b) Convert the following:

More information

CSE 140 Lecture 11 Standard Combinational Modules. CK Cheng and Diba Mirza CSE Dept. UC San Diego

CSE 140 Lecture 11 Standard Combinational Modules. CK Cheng and Diba Mirza CSE Dept. UC San Diego CSE 4 Lecture Standard Combinational Modules CK Cheng and Diba Mirza CSE Dept. UC San Diego Part III - Standard Combinational Modules (Harris: 2.8, 5) Signal Transport Decoder: Decode address Encoder:

More information

CHAPTER VI COMBINATIONAL LOGIC BUILDING BLOCKS

CHAPTER VI COMBINATIONAL LOGIC BUILDING BLOCKS CHAPTR VI- CHAPTR VI CHAPTR VI BUILDING BLOCKS R.M. Dansereau; v.. CHAPTR VI- COMBINAT. LOGIC INTRODUCTION -INTRODUCTION Combinational logic Output at any time is determined completely by the current input.

More information

Combinational Logic. Course Instructor Mohammed Abdul kader

Combinational Logic. Course Instructor Mohammed Abdul kader Combinational Logic Contents: Combinational and Sequential digital circuits. Design Procedure of combinational circuit. Adders: Half adder and Full adder. Subtractors: Half Subtractor and Full Subtractor.

More information

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks

ECE 545 Digital System Design with VHDL Lecture 1. Digital Logic Refresher Part A Combinational Logic Building Blocks ECE 545 Digital System Design with VHDL Lecture Digital Logic Refresher Part A Combinational Logic Building Blocks Lecture Roadmap Combinational Logic Basic Logic Review Basic Gates De Morgan s Law Combinational

More information

Hardware Design I Chap. 4 Representative combinational logic

Hardware Design I Chap. 4 Representative combinational logic Hardware Design I Chap. 4 Representative combinational logic E-mail: shimada@is.naist.jp Already optimized circuits There are many optimized circuits which are well used You can reduce your design workload

More information

Chap 2. Combinational Logic Circuits

Chap 2. Combinational Logic Circuits Overview 2 Chap 2. Combinational Logic Circuits Spring 24 Part Gate Circuits and Boolean Equations Binary Logic and Gates Boolean Algebra Standard Forms Part 2 Circuit Optimization Two-Level Optimization

More information

Digital Electronics Circuits 2017

Digital Electronics Circuits 2017 JSS SCIENCE AND TECHNOLOGY UNIVERSITY Digital Electronics Circuits (EC37L) Lab in-charge: Dr. Shankraiah Course outcomes: After the completion of laboratory the student will be able to, 1. Simplify, design

More information

Fundamentals of Digital Design

Fundamentals of Digital Design Fundamentals of Digital Design Digital Radiation Measurement and Spectroscopy NE/RHP 537 1 Binary Number System The binary numeral system, or base-2 number system, is a numeral system that represents numeric

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 112 Intro to Electrical and Computer Engineering ENGIN 112 Intro to Electrical and Computer Engineering Lecture 17 Encoders and Decoders Overview Binary decoders Converts an n-bit code to a single active output Can be developed using AND/OR gates Can

More information

PG - TRB UNIT-X- DIGITAL ELECTRONICS. POLYTECHNIC-TRB MATERIALS

PG - TRB UNIT-X- DIGITAL ELECTRONICS.   POLYTECHNIC-TRB MATERIALS SRIMAAN COACHING CENTRE-PG-TRB-PHYSICS- DIGITAL ELECTRONICS-STUDY MATERIAL-CONTACT: 8072230063 SRIMAAN PG - TRB PHYSICS UNIT-X- DIGITAL ELECTRONICS POLYTECHNIC-TRB MATERIALS MATHS/COMPUTER SCIENCE/IT/ECE/EEE

More information

DE58/DC58 LOGIC DESIGN DEC 2014

DE58/DC58 LOGIC DESIGN DEC 2014 Q.2 a. In a base-5 number system, 3 digit representations is used. Find out (i) Number of distinct quantities that can be represented.(ii) Representation of highest decimal number in base-5. Since, r=5

More information

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture)

COSC 243. Introduction to Logic And Combinatorial Logic. Lecture 4 - Introduction to Logic and Combinatorial Logic. COSC 243 (Computer Architecture) COSC 243 Introduction to Logic And Combinatorial Logic 1 Overview This Lecture Introduction to Digital Logic Gates Boolean algebra Combinatorial Logic Source: Chapter 11 (10 th edition) Source: J.R. Gregg,

More information

Adders - Subtractors

Adders - Subtractors Adders - Subtractors Lesson Objectives: The objectives of this lesson are to learn about: 1. Half adder circuit. 2. Full adder circuit. 3. Binary parallel adder circuit. 4. Half subtractor circuit. 5.

More information

Chapter 03: Computer Arithmetic. Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design

Chapter 03: Computer Arithmetic. Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design Chapter 03: Computer Arithmetic Lesson 03: Arithmetic Operations Adder and Subtractor circuits Design Objective To understand adder circuit Subtractor circuit Fast adder circuit 2 Adder Circuit 3 Full

More information

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY

UNIT III Design of Combinational Logic Circuits. Department of Computer Science SRM UNIVERSITY UNIT III Design of ombinational Logic ircuits Department of omputer Science SRM UNIVERSITY Introduction to ombinational ircuits Logic circuits for digital systems may be ombinational Sequential combinational

More information

Combinational Logic. Jee-Hwan Ryu. School of Mechanical Engineering Korea University of Technology and Education

Combinational Logic. Jee-Hwan Ryu. School of Mechanical Engineering Korea University of Technology and Education MEC5 디지털공학 Combinational Logic Jee-Hwan Ryu School of Mechanical Engineering Combinational circuits Outputs are determined from the present inputs Consist of input/output variables and logic gates inary

More information

ELCT201: DIGITAL LOGIC DESIGN

ELCT201: DIGITAL LOGIC DESIGN ELCT2: DIGITAL LOGIC DESIGN Dr. Eng. Haitham Omran, haitham.omran@guc.edu.eg Dr. Eng. Wassim Alexan, wassim.joseph@guc.edu.eg Lecture 4 Following the slides of Dr. Ahmed H. Madian محرم 439 ه Winter 28

More information

MODULAR CIRCUITS CHAPTER 7

MODULAR CIRCUITS CHAPTER 7 CHAPTER 7 MODULAR CIRCUITS A modular circuit is a digital circuit that performs a specific function or has certain usage. The modular circuits to be introduced in this chapter are decoders, encoders, multiplexers,

More information

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing

CSE140: Components and Design Techniques for Digital Systems. Decoders, adders, comparators, multipliers and other ALU elements. Tajana Simunic Rosing CSE4: Components and Design Techniques for Digital Systems Decoders, adders, comparators, multipliers and other ALU elements Tajana Simunic Rosing Mux, Demux Encoder, Decoder 2 Transmission Gate: Mux/Tristate

More information

Part 1: Digital Logic and Gates. Analog vs. Digital waveforms. The digital advantage. In real life...

Part 1: Digital Logic and Gates. Analog vs. Digital waveforms. The digital advantage. In real life... Part 1: Digital Logic and Gates Analog vs Digital waveforms An analog signal assumes a continuous range of values: v(t) ANALOG A digital signal assumes discrete (isolated, separate) values Usually there

More information

INSTITUTEOFAERONAUTICALENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTEOFAERONAUTICALENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTEOFAERONAUTICALENGINEERING (Autonomous) Dundigal, Hyderabad - 50004 COMPUTER SCIENCE AND ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Class Branch DIGITAL LOGIC DESIGN A040 II B.

More information

ECE 545 Digital System Design with VHDL Lecture 1A. Digital Logic Refresher Part A Combinational Logic Building Blocks

ECE 545 Digital System Design with VHDL Lecture 1A. Digital Logic Refresher Part A Combinational Logic Building Blocks ECE 545 Digital System Design with VHDL Lecture A Digital Logic Refresher Part A Combinational Logic Building Blocks Lecture Roadmap Combinational Logic Basic Logic Review Basic Gates De Morgan s Laws

More information

Binary addition by hand. Adding two bits

Binary addition by hand. Adding two bits Chapter 3 Arithmetic is the most basic thing you can do with a computer We focus on addition, subtraction, multiplication and arithmetic-logic units, or ALUs, which are the heart of CPUs. ALU design Bit

More information

3. Combinational Circuit Design

3. Combinational Circuit Design CSEE 3827: Fundamentals of Computer Systems, Spring 2 3. Combinational Circuit Design Prof. Martha Kim (martha@cs.columbia.edu) Web: http://www.cs.columbia.edu/~martha/courses/3827/sp/ Outline (H&H 2.8,

More information

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018

UNSIGNED BINARY NUMBERS DIGITAL ELECTRONICS SYSTEM DESIGN WHAT ABOUT NEGATIVE NUMBERS? BINARY ADDITION 11/9/2018 DIGITAL ELECTRONICS SYSTEM DESIGN LL 2018 PROFS. IRIS BAHAR & ROD BERESFORD NOVEMBER 9, 2018 LECTURE 19: BINARY ADDITION, UNSIGNED BINARY NUMBERS For the binary number b n-1 b n-2 b 1 b 0. b -1 b -2 b

More information

S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques

S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques S.Y. Diploma : Sem. III [DE/ED/EI/EJ/EN/ET/EV/EX/IC/IE/IS/IU/MU] Principles of Digital Techniques Time: 3 Hrs.] Prelim Question Paper Solution [Marks : 100 Q.1(a) Attempt any SIX of the following : [12]

More information

CHAPTER VI COMBINATIONAL LOGIC BUILDING BLOCKS

CHAPTER VI COMBINATIONAL LOGIC BUILDING BLOCKS CHAPTR VI- CHAPTR VI CHAPTR VI BUILDING BLOCKS R.M. Dansereau; v.. CHAPTR VI- COMBINAT. LOGIC INTRODUCTION -INTRODUCTION Combinational logic Output at any time is determined completely by the current input.

More information

Z = F(X) Combinational circuit. A combinational circuit can be specified either by a truth table. Truth Table

Z = F(X) Combinational circuit. A combinational circuit can be specified either by a truth table. Truth Table Lesson Objectives In this lesson, you will learn about What are combinational circuits Design procedure of combinational circuits Examples of combinational circuit design Combinational Circuits Logic circuit

More information

Chapter 4: Designing Combinational Systems Uchechukwu Ofoegbu

Chapter 4: Designing Combinational Systems Uchechukwu Ofoegbu Chapter 4: Designing Combinational Systems Uchechukwu Ofoegbu Temple University Gate Delay ((1.1).1) ((1.0).0) ((0.1).1) ((0.1).0) ((1.1) = 1 0 s = sum c out carry-out a, b = added bits C = carry in a

More information

vidyarthiplus.com vidyarthiplus.com vidyarthiplus.com ANNA UNIVERSITY- COMBATORE B.E./ B.TECH. DEGREE EXAMINATION - JUNE 2009. ELECTRICAL & ELECTONICS ENGG. - FOURTH SEMESTER DIGITAL LOGIC CIRCUITS PART-A

More information

Lecture 2 Review on Digital Logic (Part 1)

Lecture 2 Review on Digital Logic (Part 1) Lecture 2 Review on Digital Logic (Part 1) Xuan Silvia Zhang Washington University in St. Louis http://classes.engineering.wustl.edu/ese461/ Grading Engagement 5% Review Quiz 10% Homework 10% Labs 40%

More information

Digital System Design Combinational Logic. Assoc. Prof. Pradondet Nilagupta

Digital System Design Combinational Logic. Assoc. Prof. Pradondet Nilagupta Digital System Design Combinational Logic Assoc. Prof. Pradondet Nilagupta pom@ku.ac.th Acknowledgement This lecture note is modified from Engin112: Digital Design by Prof. Maciej Ciesielski, Prof. Tilman

More information

Unit 2 Session - 6 Combinational Logic Circuits

Unit 2 Session - 6 Combinational Logic Circuits Objectives Unit 2 Session - 6 Combinational Logic Circuits Draw 3- variable and 4- variable Karnaugh maps and use them to simplify Boolean expressions Understand don t Care Conditions Use the Product-of-Sums

More information

Chapter 3 Ctd: Combinational Functions and Circuits

Chapter 3 Ctd: Combinational Functions and Circuits Chapter 3 Ctd: Combinational Functions and Circuits 1 Value Fixing, Transferring, and Inverting Four different functions are possible as a function of single Boolean variable Transferring Inverting Value

More information

ELECTRONICS & COMMUNICATION ENGINEERING PROFESSIONAL ETHICS AND HUMAN VALUES

ELECTRONICS & COMMUNICATION ENGINEERING PROFESSIONAL ETHICS AND HUMAN VALUES EC 216(R-15) Total No. of Questions :09] [Total No. of Pages : 02 II/IV B.Tech. DEGREE EXAMINATIONS, DECEMBER- 2016 First Semester ELECTRONICS & COMMUNICATION ENGINEERING PROFESSIONAL ETHICS AND HUMAN

More information

Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4

Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4 Unit II Chapter 4:- Digital Logic Contents 4.1 Introduction... 4 4.1.1 Signal... 4 4.1.2 Comparison of Analog and Digital Signal... 7 4.2 Number Systems... 7 4.2.1 Decimal Number System... 7 4.2.2 Binary

More information

ECE 341. Lecture # 3

ECE 341. Lecture # 3 ECE 341 Lecture # 3 Instructor: Zeshan Chishti zeshan@ece.pdx.edu October 7, 2013 Portland State University Lecture Topics Counters Finite State Machines Decoders Multiplexers Reference: Appendix A of

More information

Combinational Logic Design/Circuits

Combinational Logic Design/Circuits 3 ` Combinational Logic Design/Circuits Chapter-3(Hours : 12 Marks:24 ) Combinational Logic design / Circuits 3.1 Simplification of Boolean expression using Boolean algebra. 3.2 Construction of logical

More information

DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS. To design and implement encoders and decoders using logic gates.

DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS. To design and implement encoders and decoders using logic gates. DESIGN AND IMPLEMENTATION OF ENCODERS AND DECODERS AIM To design and implement encoders and decoders using logic gates. COMPONENTS REQUIRED S.No Components Specification Quantity 1. Digital IC Trainer

More information

Analog & Digital Electronics Laboratory. Code - CS391. Lab Manual

Analog & Digital Electronics Laboratory. Code - CS391. Lab Manual Analog & Digital Electronics Laboratory Code - CS391 Lab Manual EXPERIMENT: 1 LOGIC GATES AIM: To study and verify the truth table of logic gates LEARNING OBJECTIVE: Identify various ICs and their specification.

More information

DIGITAL LOGIC DESIGN PPT

DIGITAL LOGIC DESIGN PPT DIGITAL LOGIC DESIGN PPT INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 COMPUTER SCIENCE AND ENGINEERING/INFORMATION TECHNOLOGY DIGITAL LOGIC DESIGN PPT AEC020 Course Coordinator

More information

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Principles of Digital Techniques

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Principles of Digital Techniques MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Principles of Digital Techniques Subject Code: Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word

More information

Binary addition (1-bit) P Q Y = P + Q Comments Carry = Carry = Carry = Carry = 1 P Q

Binary addition (1-bit) P Q Y = P + Q Comments Carry = Carry = Carry = Carry = 1 P Q Digital Arithmetic In Chapter 2, we have discussed number systems such as binary, hexadecimal, decimal, and octal. We have also discussed sign representation techniques, for example, sign-bit representation

More information

Numbers & Arithmetic. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See: P&H Chapter , 3.2, C.5 C.

Numbers & Arithmetic. Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University. See: P&H Chapter , 3.2, C.5 C. Numbers & Arithmetic Hakim Weatherspoon CS 3410, Spring 2012 Computer Science Cornell University See: P&H Chapter 2.4-2.6, 3.2, C.5 C.6 Example: Big Picture Computer System Organization and Programming

More information

Menu. 7-Segment LED. Misc. 7-Segment LED MSI Components >MUX >Adders Memory Devices >D-FF, RAM, ROM Computer/Microprocessor >GCPU

Menu. 7-Segment LED. Misc. 7-Segment LED MSI Components >MUX >Adders Memory Devices >D-FF, RAM, ROM Computer/Microprocessor >GCPU Menu 7-Segment LED MSI Components >MUX >Adders Memory Devices >D-FF, RAM, ROM Computer/Microprocessor >GCPU Look into my... 1 7-Segment LED a b c h GND c g b d f a e h Show 7-segment LED in LogicWorks,

More information

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS

ARITHMETIC COMBINATIONAL MODULES AND NETWORKS ARITHMETIC COMBINATIONAL MODULES AND NETWORKS 1 SPECIFICATION OF ADDER MODULES FOR POSITIVE INTEGERS HALF-ADDER AND FULL-ADDER MODULES CARRY-RIPPLE AND CARRY-LOOKAHEAD ADDER MODULES NETWORKS OF ADDER MODULES

More information

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors

We are here. Assembly Language. Processors Arithmetic Logic Units. Finite State Machines. Circuits Gates. Transistors CSC258 Week 3 1 Logistics If you cannot login to MarkUs, email me your UTORID and name. Check lab marks on MarkUs, if it s recorded wrong, contact Larry within a week after the lab. Quiz 1 average: 86%

More information

Review for Test 1 : Ch1 5

Review for Test 1 : Ch1 5 Review for Test 1 : Ch1 5 October 5, 2006 Typeset by FoilTEX Positional Numbers 527.46 10 = (5 10 2 )+(2 10 1 )+(7 10 0 )+(4 10 1 )+(6 10 2 ) 527.46 8 = (5 8 2 ) + (2 8 1 ) + (7 8 0 ) + (4 8 1 ) + (6 8

More information

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function

( c) Give logic symbol, Truth table and circuit diagram for a clocked SR flip-flop. A combinational circuit is defined by the function Question Paper Digital Electronics (EE-204-F) MDU Examination May 2015 1. (a) represent (32)10 in (i) BCD 8421 code (ii) Excess-3 code (iii) ASCII code (b) Design half adder using only NAND gates. ( c)

More information

Combinational Logic. Review of Combinational Logic 1

Combinational Logic. Review of Combinational Logic 1 Combinational Logic! Switches -> Boolean algebra! Representation of Boolean functions! Logic circuit elements - logic gates! Regular logic structures! Timing behavior of combinational logic! HDLs and combinational

More information

Reg. No. Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. Computer Science and Engineering

Reg. No. Question Paper Code : B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER Second Semester. Computer Science and Engineering Sp 6 Reg. No. Question Paper Code : 27156 B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2015. Second Semester Computer Science and Engineering CS 6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics

LOGIC CIRCUITS. Basic Experiment and Design of Electronics Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Outline Combinational logic circuits Output

More information

Design of Sequential Circuits

Design of Sequential Circuits Design of Sequential Circuits Seven Steps: Construct a state diagram (showing contents of flip flop and inputs with next state) Assign letter variables to each flip flop and each input and output variable

More information

DIGITAL LOGIC CIRCUITS

DIGITAL LOGIC CIRCUITS DIGITAL LOGIC CIRCUITS Introduction Logic Gates Boolean Algebra Map Specification Combinational Circuits Flip-Flops Sequential Circuits Memory Components Integrated Circuits Digital Computers 2 LOGIC GATES

More information

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing IT 204 Section 3.0 Boolean Algebra and Digital Logic Boolean Algebra 2 Logic Equations to Truth Tables X = A. B + A. B + AB A B X 0 0 0 0 3 Sum of Products The OR operation performed on the products of

More information

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D.

LOGIC CIRCUITS. Basic Experiment and Design of Electronics. Ho Kyung Kim, Ph.D. Basic Experiment and Design of Electronics LOGIC CIRCUITS Ho Kyung Kim, Ph.D. hokyung@pusan.ac.kr School of Mechanical Engineering Pusan National University Digital IC packages TTL (transistor-transistor

More information

KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE

KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE Estd-1984 KUMARAGURU COLLEGE OF TECHNOLOGY COIMBATORE 641 006 QUESTION BANK UNIT I PART A ISO 9001:2000 Certified 1. Convert (100001110.010) 2 to a decimal number. 2. Find the canonical SOP for the function

More information

Cs302 Quiz for MID TERM Exam Solved

Cs302 Quiz for MID TERM Exam Solved Question # 1 of 10 ( Start time: 01:30:33 PM ) Total Marks: 1 Caveman used a number system that has distinct shapes: 4 5 6 7 Question # 2 of 10 ( Start time: 01:31:25 PM ) Total Marks: 1 TTL based devices

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING CS6201 DIGITAL PRINCIPLES AND SYSTEM DESIGN UNIT I : BOOLEAN ALGEBRA AND LOGIC GATES PART - A (2 MARKS) Number

More information

CMSC 313 Lecture 19 Homework 4 Questions Combinational Logic Components Programmable Logic Arrays Introduction to Circuit Simplification

CMSC 313 Lecture 19 Homework 4 Questions Combinational Logic Components Programmable Logic Arrays Introduction to Circuit Simplification CMSC 33 Lecture 9 Homework 4 Questions Combinational Logic Components Programmable Logic rrays Introduction to Circuit Simplification UMC, CMSC33, Richard Chang CMSC 33, Computer Organization

More information

Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two.

Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two. Announcements Midterm Exam Two is scheduled on April 8 in class. On March 27 I will help you prepare Midterm Exam Two. Chapter 5 1 Chapter 3: Part 3 Arithmetic Functions Iterative combinational circuits

More information

Digital Circuits and Design

Digital Circuits and Design Digital Circuits and Design S. Salivahanan Principal, SSN College of Engineering Chennai S. Arivazhagan Principal, Mepco Schlenk Engineering College Sivakasi. All rights reserved. 3 is a department of

More information

Chapter 5 Arithmetic Circuits

Chapter 5 Arithmetic Circuits Chapter 5 Arithmetic Circuits SKEE2263 Digital Systems Mun im/ismahani/izam {munim@utm.my,e-izam@utm.my,ismahani@fke.utm.my} February 11, 2016 Table of Contents 1 Iterative Designs 2 Adders 3 High-Speed

More information

Lecture A: Logic Design and Gates

Lecture A: Logic Design and Gates Lecture A: Logic Design and Gates Syllabus My office hours 9.15-10.35am T,Th or gchoi@ece.tamu.edu 333G WERC Text: Brown and Vranesic Fundamentals of Digital Logic,» Buy it.. Or borrow it» Other book:

More information